您現在的位置:首頁> 外文會議>Annual meeting of the Society for Computation in Linguistics >文獻詳情

Do RNNs learn human-like abstract word order preferences?

機器翻譯RNN是否學習類似人類的抽象詞序偏好?

原文傳遞 原文傳遞并翻譯 加入購物車 收藏
3 【6hr】

【摘要】RNN language models have achieved state-of-the-art results on various tasks, but what exactly they are representing about syntax is as yet unclear. Here we investigate whether RNN language models learn humanlike word order preferences in syntactic alternations. We collect language model surprisal scores for controlled sentence stimuli exhibiting major syntactic alternations in English: heavy NP shift, particle shift, the dative alternation, and the genitive alternation. We show that RNN language models reproduce human preferences in these alternations based on NP length, an-imacy, and definiteness. We collect human acceptability ratings for our stimuli, in the first acceptability judgment experiment directly manipulating the predictors of syntactic alternations. We show that the RNNs' performance is similar to the human acceptability ratings and is not matched by an n-gram baseline model. Our results show that RNNs learn the abstract features of weight, animacy, and definiteness which underlie soft constraints on syntactic alternations.

【作者】Richard Futrell; Roger P. Levy;

【作者單位】Department of Language Science, UC Irvine; Department of Brain and Cognitive Sciences, MIT;

【年(卷),期】2019,,

【頁碼】50-59

【總頁數】10

【正文語種】eng

【中圖分類】;

【關鍵詞】;


激情球迷怎么玩 今日湖北快三走势图 广东快乐十分结果 天刀不充钱能赚钱吗 开间包原味赚钱吗 湖南快乐10分 湖北快3开奖查询结果 南粤36选7开奖直播现场 微乐河南麻将辅助器免费版 7星彩 时时彩买大小绝招 体球比分网即时比分 卖手机苹果不赚钱吗 山东时时彩是什么彩票 金莎娱乐棋牌游戏平台 麻将游戏到底有没有挂 球探篮球比分即时足球比分